All Challenges

Registration (25/06/2025 - 08/07/2025)
Training Phase (09/07/2025 - 15/07/2025)
Validation Phase (16/07/2025 - 29/07/2025)
Final Submission (30/07/2025 - 05/08/2025)
Judging Phase (06/08/2025 - 19/08/2025)
Result Announcement (20/08/2025 - 20/08/2025)
Today (27/06/2025)
Registration Deadline (09/07/2025)

Start

25/06/2025

Close

20/08/2025

a month left

Face Anti-Spoofing Challenge

Build a model that can detect spoofing attempts without flagging real users.

Challenge Rewards:

4500 AIOZ

Participants

7

Submissions

1

Face Anti-Spoofing Model

systempython

Table of Contents

Quick Start

# 1. Install dependencies
pip install -r requirements.txt

# 2. Start developing your solution. Follow the tutorial below to implement your AI model

# 3. Run the demo to test your implementation
python demo.py

# 4. Verify Your Submission
python -m my_ai_lib.predict_submission

Note: You need to implement your face anti-spoofing model following the tutorial guide.

Introduction

Facial recognition systems are increasingly common in various sectors, from device security to financial applications. However, the emergence of spoofing methods like printed photos, digital displays, 3D masks, and deepfake videos presents new challenges to their safety and reliability.

AIOZ Face Anti-Spoofing Challenge

Goal: Build and improve solutions based on provided resources while fostering creativity in model design and training strategies.

Requirements

System Requirements

  • Python 3.10+
  • CUDA-compatible GPU (recommended)

Dependencies

Install all required packages:

pip install -r requirements.txt

Project Structure

Your AI library should follow this structure:

repository/
├── my_ai_lib/                   # Your AI library
│   ├── __init__.py              # Required: Library initialization
│   ├── run.py                   # Required: Main workflow function
│   ├── predict_submission.py    # Required: Submission function
│   └── [your_modules]/          # Your custom modules
├── models/                      # Model weights directory
├── demo.py                      # Demo script
├── requirements.txt             # Dependencies
└── README.md                    # Documentation

Key Components

ComponentDescriptionStatus
my_ai_lib/Core AI library directoryRequired
my_ai_lib/__init__.pyLibrary initializationRequired
my_ai_lib/run.pyMain AI workflowRequired
my_ai_lib/predict_submission.pySubmission functionRequired
demo.pyDemo and testing scriptRequired

Detailed Tutorial

Step 1: Initialize Your AI Library

1.1 Define my_ai_lib/__init__.py

from .run import run

This file exposes the run() function from run.py as an attribute of the my_ai_lib, allowing it to be called via my_ai_lib.run()

1.2 Define Input/Output Objects in my_ai_lib/run.py

Create your custom input and output classes:

from pathlib import Path
from typing import Any, Union, Literal
from aioz_ainode_adapter.schemas import InputObject, OutputObject, FileObject


class MyInput(InputObject):
    input_image: str
    example_param: Any


class MyOutput(OutputObject):
    text: str
    output_image: FileObject

Step 2: Understanding AIOZ Schema Objects

The aioz_ainode_adapter library defines 3 core object types based on pydantic.BaseModel:

InputObject

Define the format for input when the AIOZ-AI-Node system sends it to your AI library.

Default Parameters:

ParameterTypeDescription
deviceChoiceDevice for your model: ["cuda", "cpu", "gpu"]
model_storage_directoryStringDirectory containing model weights

Important : Always use model_storage_directory for model weight paths, as AIOZ-AI-Node will specify this location.

OutputObject

Define the format for output when your AI library sends to the AIOZ-AI-Node system.

FileObject

Define the format for the file, if your output has a file. This object has two fields:

FieldTypeDescription
dataChoiceFile data: io.BufferedReader, Path, or URL
nameStringFile name

Example FileObject creation:

output_file = FileObject(data=open("file/path.csv", "rb"), name="output.csv")

Note:

  • Input files must be local file paths or URLs
  • Output files must be FileObject instances

Step 3: Implement the Main Workflow

3.1 Define Your AI Task Function

def do_ai_task(
        input_image: Union[str, Path],
        example_param: Any,
        model_storage_directory: Union[str, Path],
        device: Literal["cpu", "cuda", "gpu"] = "cpu",
        *args, **kwargs) -> Any:
    """
    Define AI task: load model, pre-process, post-process, etc.
    
    Args:
        input_image: Path to input image
        example_param: Example parameter
        model_storage_directory: Directory containing model weights
        device: Computing device
        
    Returns:
        Result
    """
    # Define your AI task workflow. Below is an example
    text = "This is the AI task result"
    output_image = open("wiki/aioz.png", "rb")  # io.BufferedReader
    return text, output_image

3.2 Implement the Required run() Function

def run(input_obj: InputObject) -> OutputObject:
    """
    Main entry point for your AI library.
    
    Args:
        input_obj: Input object containing all parameters
        
    Returns:
        OutputObject: Results of AI processing
    """
    # Validate and parse input
    my_input = MyInput.model_validate(input_obj.model_dump())
    print(f"Input: {my_input}")

    # Execute AI task
    text, output_image = do_ai_task(
        input_image=my_input.input_image,
        example_param=my_input.example_param,
        model_storage_directory=my_input.model_storage_directory,
        device=my_input.device
    )

    # Create output object
    output_file = FileObject(data=output_image, name="output_image.png")
    output_obj = MyOutput(text=text, output_image=output_file)
    return output_obj

Note: The run() function name is mandatory and cannot be changed. The do_ai_task() function can be renamed and customized.

Step 4: Create Demo Script

Create demo.py to test your implementation:

import my_ai_lib
from aioz_ainode_adapter.schemas import InputObject


def main():
    """Demo function to test your AI library."""
    input_obj = InputObject(
        input_image="wiki/aioz.png", 
        example_param="example"
    )
    output_obj = my_ai_lib.run(input_obj)
    print(f"Output: {output_obj}")


if __name__ == '__main__':
    main()

The my_ai_lib.run() function receives an InputObject and returns an OutputObject.

Expected console output:

Input: type='InputObj' device='cuda' model_storage_directory='models' input_image='wiki/aioz.png' example_param='example'
Output: type='OutputObj' text='This is the AI task result' output_image=FileObject(type='FileObj', data=<_io.BufferedReader name='wiki/aioz.png'>, name='output_image.png')

Step 5: Add Model Weights

Place your trained model files in the models/ directory:

models/
├── model.pth          # Your trained model
├── config.json        # Model configuration
└── etc. 

Submission Guidelines

For Private Submissions

Step 6: Create Prediction Script

Implement the predict_submission() function in my_ai_lib/predict_submission.py:

Requirements:

  • Function accepting test data folder path (string)
  • Load your trained model
  • Process test dataset
  • Generate predictions
  • Save results as ./result.csv

Implementation Template:

def predict_submission(test_data_folder: str):
    """
    Generate predictions for challenge submission.
    
    Args:
        test_data_folder: Path to test data directory
    """
    # Load your model
    # Process test data
    # Generate predictions
    # Save to ./result.csv
    pass


def main():
    """Main function for testing submission."""
    predict_submission("path/to/test/data")


if __name__ == '__main__':
    main()

Important: The result.csv must match the challenge's sample submission format.

Verify Your Submission:

python -m my_ai_lib.predict_submission

License

This repository is licensed under the MIT License.